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The method of many scales is used to examine the nonlinear oscillations of a spherical gas bubble that occur 

under the action of a periodically changing external pressure in a spherical volume of inviscid, incompressible 

liquid and in a liquid flow. The influence of the finite dimensions of the volume and liquid f low velocity on 

the conditions for the existence of certain types of the equilibrium state of an oscillating bubble is analyzed. 

Nonlinear oscillations of gas bubbles are observed in various situations, particularly when an acoustic field 

propagates through a bubble mixture or a liquid flows past various obstacles. Therefore, there is an obvious need 

for a theory of nonlinear oscillations of a bubble. The current theory gives the best description of the dynamics of 

a radially pulsing single bubble in an infinite volume of liquid [ 1, 2 ]. In a number of cases, patterns of transition 

are analyzed: from regular to random vibrations at the initial stage with a change in the external parameters of the 

effect on a nonlinearly oscillating bubble. Particular attention is paid here to the bifurcation mechanism underlying 

the change of equilibrium type of a nonlinear system [3, 4 !. However, the considered models of nonlinear systems 

did not analyze the situation when the volume in which a bubble oscillates has finite dimensions or when a radially 
oscillating bubble itself is subjected additionally to directed external influences. Obviously, the presence of such 

situations will introduce corrections to the bifurcation mechanism involved in the change of equilibrium type of an 
oscillating bubble. 

It should be noted that in a number of works an analysis of the effect exerted by the shape of the liquid 

surface on the oscillating gas bubble parameters is performed [5, 6 ]. But they failed to consider possible types of 
equilibrium of nonlinear systems and the mechanism of their change. Therefore, we made an attempt to analyze 

the effect of various boundary conditions on the bifurcation mechanism underlying the change of equilibrium type 

of an oscillating gas bubble in the region of the main resonance. We considered two situations: a bubble occurring 

in an acoustic field oscillates radially in a spherical volume of liquid of radiu_ L which greatly exceeds the bubble 

radius R0; a bubble oscillates not in a stagnant volume of liquid but in a liquid that moves relative to it with velocity 

U. 

Suppose a spherical bubble oscillates at the center of a spherical liquid volume of size L. Its vibrations are 

radial and occur in the region of the main resonance with an external periodic influence distributed uniformly over 

the entire external surface of the sphere volume and directed along its radius. The liquid itself is incompressible 
and inviscid. 

Since the radius of the volume L greatly exceeds of the bubble size ( L / R  o >> 1), we assume that the 

pressure at the boundary of the spherical layer is determined only by the external periodic influence, which is 

independent of the character of vibrations of the bubble itself, as if the bubble were in an infinite volume of liquid. 

We obtain an equation for the motion of the bubble walls. For this case, we integrate the equation of motion 

with respect to r within the limits of from R(T) to L: 

i §  (r)+ O P 
n Or 2 -~r -p d r = O .  (1) 
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Assuming that the expression for the velocity v has the form 

V ( R )  R 2 
2 

r 
, r > _ R ,  

we obtain the following equation for the change in the bubble radius: 

_ - -  + d R  2R 4] = 
dr 2 h d~ 2 i L 2L4J 

= P (R, r) - P (L, 0 .  

We assume that the pressure on the bubble surface P ( R ,  r) is determined by the relation 

e (R,  ~) = Po - ~ ,  

where Po = P *  + 2zr /Ro.  

The pressure at the boundary of the spherical layer of radius L is 

P (L, r) = P* - Pa cos ~ r .  

The amplitude of the bubble oscillations is assumed to the small. Then 

R = R  o(1 + x ) = R  0( I  + e u ) .  

The value of u is of the order of unity, and the perturbation parameter e lies within the range 0 < e _< I. 
For further analysis of Eq. (2) it is convenient to use the dimensionless variables 

, ( :o) , ,  o 
t =  ~0 l ' ,  ~0 = ~ 0  , w = - ~ 0 ;  W -  RoP0, 

Pa P~ Pa L 
. = r / ,  - 1 -  W, - ~ = ( 1 - W ) r / ,  l -  . 

Pc, P0 P0 R0 

Substitution of Eqs. (3)-(6) into Eq. (2) yields 

1 ] 3 2 .2  2 2.2 
e'~ ( l  + eu)  1 - 7 ( l + e u  ) + ~ e u - -f e u ( l + e u ) +  

�9 2 

+ e2u-----(1 + eu)  4 -  (1 + eu)  -3~ + W(1 + eu)  -1 
2l 4 

+ ( l - W )  x 

x (1 - r/cos f2t) = 0 ,  

where �9 = d / d t .  

Since x -- eu,  for ~h, case of the main resonance we assume 

e3pv 1 e2(5 , - -  = e h  w = c o  0 + , 
~ =  l ' 

where the parameters Pv, h, and 6 are of the order of unity. 
With allowance for Eq. (8), relation (7) can be rewritten in the form 

(2) 

(3) 

(4)  

(5) 

(6) 

(7) 

(8)  
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( a . ~  ~ ~ ~ ) /i+too2u=e - ~ u + a l u  - o~ u h  + 

u u - a 2 u  +PvCOStOt+~u + -tOoU h- toouh  + e  . . . .  
/ 

2 9 
toO = 3~ - W, a I = - ~ 7 0 , +  I ) - 2 W ,  

a 2 = 2~(9y 2 + 18)' + 11) -- 3W.  (9) 

Using the method of many scales [7, 8 ] and restricting ourselves to terms of the order of smallness of e 2, 

we obtain a system of equations that determines the time dependence of the amplitude of bubble oscillations C and 

phase shift ~o: 

- -  = -- sin ~o + 
dr 

C 2 N  1 1 ~ ( ~ / )  
d - ' ~ = W O - t o  - -  + - - c o s  9 ' +  , 
dr 2w 0 8Cao/2 2/2 2to0C 

(lO) 

where 

5a1(32) 3 / 32) 
N-- 6~o~ ~ - ~ too - ~ a2 - ~ too 

Knowing the amplitude and the phase of vibrations of the bubble, we can write the equations of motion of 

the bubble walls: 

X = C c o s  (tot + ~) + C 2 [c I + c 2cOs2(to$ + ~o) l ,  

1( 32 / l (  32 / 
~ -  ~ a~-~O,o,  ~--  6O, o~ ~ + ~too" (11) 

If the vibrations of the bubble are stationary, then d c / d r  = O, dga /dr  = O. In this case, equating the left-hand 

sides of Eqs. (10) to zero, we write an expression for C: 

C6 + C4 (co - too) + ~ ( 1  - 4600) + ( t o o -  to)2 + 

t~ (to - toO) (I + 4Wo) 0 (12) 
1 16to~) + N2/2 + 16N2/4 (1 - 8to o + - = . 

The phase shift for stationary vibrations is 

r (13) 
~ ' =  2l" 

We will analyze the change of equilibrium type of an oscillating bubble in the region of the main resonance 
as a function of the amplitude and frequency of the external influence and of the radius of the medium's  volume l. 

210 



a2 

o j 

0 0.2 0.4 0 

b 

f , I! " 
0.2 co-~ 

Fig. 1. Bifurcation diagrams and phase trajectories (10) for an oscillating 

bubble in a spherical volume: a) l, 2, 3) - (14), l-- 5, 10, oo; same (17) in a 

liquid flow: b) l, 2, 3) - (20), V-- 0.02, 0.001, 0; I) with resonance; II) 

without resonance. 

For this purpose, we consider a bubble with initial radius R0 -- I0 -5 m. Let p -" 998 kg.m -3, a -- 0.0725 nm -1, 

P~ -- 101,300 Pa, and 1' " 4/3. 
The results obtained are given in Fig. la, where the bifurcation diagram and the corresponding phase 

trajectories are presented in the coordinate system c, ~o + ~/2l. The phase trajectories were found as a result of 

numerical integration of system of equations (10). Curves 1, 2, and 3 were obtained for different values of l; they 

separate two regions with different types of equilibrium of the nonlinear system. The equation for curves 1, 2, and 

3 was derived from Eq. (12): 

2 [ 4<0047'- 1] 3/2 (14) 
= 3 ( ~  - 0 ' )  + . 

From Fig. la we can see that with a decrease in ~ we arrive from an upper region with one center at the 

intersection of the curve described by Eq. (14) at a region with two centers and a saddle, i.e., the change of 
equilibrium type occurs, which is accompanied by a "saddle-center" bifurcation. Moreover, the smaller l, the higher 

the amplitude ~ at which the indicated bifurcation is observed for a given frequency of influence. 

The vibrations of the bubble in the vicinity of singular points can have resonance and nonresonance char- 

acters. The type of vibration is indicated in Fig. la. 
Thus, if the parameters associated with the external influence are close to the bifurcation line, then the 

smallest changes in the boundaries of the medium in which vibrations occur can lead to a change in the character 

of the vibrations of the bubble. 
We will consider the second case. Suppose a gas bubble in the field of a periodically varying external 

pressure oscillates in a liquid flow. The liquid flow moves uniformly with velocity U relative to the bubble. The 

value of U is rather small. Therefore, we assume that the bubble has a spherical shape and accomplishes radially 
spherical vibrations. The liquid is incompressible and inviscid. In this case the equation of motion of the bubble 

walls, with allowance for surface tension, is written as [1 ] 

RdZR+3 ( d - ~ l Z d 2 W  2 - - -  U24 =p-1 [ p ( R , Q - p ( o o ,  Q ] ,  (15) 

where P(R, 3) is defined by relation (3) and the pressure far away from the bubble walls p(oo, 3) by relation (4). 

Just as in the first case, we introduce dimensionless variables according to Eq. (6). In addition to them, 
we also use the parameter V = U2p/Po . For the region of the main resonance expression (15) is then rewritten in 

the following form: 
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fi + co2u + e - ~ k + a tu 2 +  + uu - a2u -- ~ + Pv COS COT , 

where V = e2~. 

Using the method of many scales and restricting ourselves to terms of the order  of smallness of e 2, we 

obtain a system of equations for the amplitude and phase of vibrations: 

dc - - ~  sin ~o, 
" d - f - -  - 2co o 

d~o _ coo - co - -  cos ~o �9 
dr  2w o co o 2cooC 

For s tat ionary vibrations of the bubble ( d c / d r  = d~a/dr = O) Eq. (17) yields expressions for C and ~o: 1/] 
- -  o(co - coo) + 4 v  - + 

I + C2 400 a I 2V a 1 
(coo - 0') 2 + --coo - --coo (~176 - co) 2 o2 - ~ - - 0 ,  (18) 

~o = 0 --_ zcn, (19)  

where n = 0, 1, 2 . . . . .  

To  analyze the change of equilibrium type of an oscillating bubble as a function of the ampli tude and 

frequency of the external  influence and the parameter  V, we take the same values of R0, p ,  o, P~,, and y, as in 

the first case. The  results of calculations are given in Fig. lb,  where the bifurcation diagram and corresponding 

phase trajectories are given in the coordinate system C, ~o. Curves 1, 2, and 3 correspond to different values of V. 

An equation for these curves is obtained from Eq. (18) and has the form 

(20) 
- 3 ( 3 N ) 1 / 2  2co(co O - c o )  + 2V 2w 02 " 

As is seen from Fig. lb,  curves 1, 2, and 3 separate the regions with different types of equilibrium. If for 

a given frequency of external  influence and flow velocity we consider the state of the nonl inear  system in the case 

of a successive decrease in ~, then from an upper region with one center  we arrive at another  region with two centers 

and a saddle. In this case, the change of equilibrium type is accompanied by a ' s a d d l e - c e n t e r '  bifurcation. The  

larger the value of V, the larger the value of ~ at which the indicated bifurcation is observed for a given frequency. 

Curves 3 in Fig. lb  correspond to the limiting cases when, apart  from the acoustic field, there  are no any 

other  boundary  influences, i.e., when l = oo or V= O. Thus,  any of the aforementioned boundary  conditions imposed 

on the known situation in which a gas bubble exposed to a periodically changing external  pressure oscillates radially 

in a s tagnant  volume of liquid causes a shift to the left of the boundary  of the change of equilibrium type of a 

nonlinear system. In other  words, at certain values of the parameters of external  influence a nonlinear system is 

very sensitive to the smallest change in one of these parameters.  In this case, a change of equilibrium type is 

accompanied by a ' s a d d l e - c e n t e r '  bifurcation. 

Despite the limitations of the models considered, the above conclusion has a practical importance. First of 

all, this is due to the fact that in a more real situation the state of a nonlinear system (i.e., the type of equilibrium) 

can also be determined to a greater  extent by the conditions at its boundary.  
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N O T A T I O N  

R, R O, current and equilibrium radii of a bubble; r, time; p, density of the liquid medium; a, coefficient of 
surface tension; f~, frequency of external influence; o~ o, dimensionless natural frequency of the system; P, pressure 
in the liquid; P~o, constant pressure; Pa, amplitude of external influence; to, dimensionless frequency of external 
influence; y, polytropic exponent; v(r), v(R) liquid velocity outside the bubble and on its surface. 
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